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Abstract. The theory of measurements in general relativity is outlined recalling the steps
which are essential to single out a physical measurement and characterize a physical effect;
these steps fix the measurement protocol . A new general relativistic effect is illustrated as a
strong case of the protocol application. In the Schwarzchild space-time, particles moving on
spatially circular non-geodesic orbits with radii less than 3M increase their binding energy if
one increases the modulus of their angular velocity hence they require a larger acceleration
pointing outwards to remain on circular orbits at the same radius (Abramowicz and Lasota,
1974). More recently it was found by the Author (de Felice, 1994) that in the Kerr metric
this same relativistic effect also occurs at arbitrary large distances from the rotating source,
but only for counter-rotating non-geodesic spatially circular orbits and in a small range of
the permitted angular velocity of revolution.

1. Introduction

A physical measurement is meaningful only if
one identifies in a non ambiguous way who
is the observer and what is being observed.
The same observable can be the target of more
than one observer so one needs a suitable algo-
rithm to compare their measurements. This is
the task of the theory of measurement in the
framework of general relativity (de Felice F.
and Bini D. 2010). The main product of the
above theory is the formulation of a measure-
ment protocol, namely a number of steps, logi-
cally consequential, which allow one to end up
with a physically significant measurement. The
basic protocol steps are the following, quoting
de Felice F. and Bini D. (2010):
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1. Identify the covariant equations which de-
scribe the phenomenon under investiga-
tion.

2. Identify the observer who makes the mea-
surements.

3. Chose a frame adapted to that observer al-
lowing the space-time splitting into the ob-
server’s space and time.

4. Decide whether the intended measurement
is local or non-local with respect to the
background curvature.

5. Identify the frame components of those
quantities which are the observational tar-
gets.

6. Find a physical interpretation of the above
components following a suitable criterion
such as, for example, comparing with what
is known in special relativity or in non-
relativistic theories.
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7. Verify the degree of the residual ambiguity
in the interpretation of the measurements
and decide the strategy to eliminate it.

As stated, each step of the sequence re-
quires the fulfillment of the previous ones so
only at the end of the above procedure one can
qualify a quantity as the result of a physical
measurement. Satisfying the protocol require-
ments, however, does not guarantee a correct or
just meaningful interpretation of the measure-
ment. An example of a measurement which
leads to the assessment of a new general rel-
ativistic effect is illustrated below.

2. The general relativistic effect

In Schwarzschild space-time, spatially circular
orbits with radii r < 3M, M being the mass
of the metric source in geometrized units, have
the property that to an increase of the modu-
lus of the angular velocity of revolution corre-
sponds an increase of the thrust in the outward
direction in order to keep the orbit circular and
at the same radius. This effect, first found by
Abramowicz and collaborators (Abramowicz
M.A. and Lasota J.P.Bonifacio 1994), is highly
counter-intuitive and has no Newtonian ana-
logue. A reasonable interpretation is that, suf-
ficiently close to a compact object as a black
hole, an increase of the angular velocity of
revolution of the orbiting particle contributes
more to its weight (increasing its binding en-
ergy) than it does to the centrifugal potential
(de Felice F. 1991) Although consistent with
the principle of relativity, the occurrence of this
effect appeared to be confined to space-time
regions with high curvature and therefore not
easily testable. If the space-time source, how-
ever, is a rotating one so that gravitational drag-
ging cannot be neglected, then the above effect
was found by the Author (de Felice F. 1994) to
hold arbitrary away from the source and there-
fore testable in a gravitational field as weak as
that of the Earth.

We now consider Kerr space-time; its met-
ric reads:

ds2 = −
(
1 − 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdφ

+
A
Σ

sin2 θdφ2 +
Σ

∆
dr2 + Σdθ2 (1)

where M is the mass of the metric source, a its
specific angular momentum1 and the functions
∆ , Σ and A are given by:

∆ = r2 − 2Mr + a2 (2)
Σ = r2 + a2 cos2 θ (3)
A = (r2 + a2)2 − a2∆ sin2 θ. (4)

Its asymptotic limit leads to the Lense-
Thirring solution which describes the space-
time of a weakly rotating spherical source. The
specific thrust associated to a non-geodesic
equatorial spatially circular orbit in the Kerr
metric, is given, from de Felice F. (1991) and
de Felice F. and Usseglio-Tomasset S. (1991),
by:

f̃ (y, a; r) =
∆1/2

r2

(y − yg+
)(y − yg−)

(y − yc+)(y − yc−)
θ = π/2 (5)

where

yc± =
a ± ∆1/2

r2 (6)

yg± = ±
√

M
r3 (7)

y ≡ Ω

1 − aΩ
. (8)

Here Ω is the angular frequency of the orbital
revolution as it would be measured at infin-
ity, y = yg±(r) is the condition for a geodesic
orbit and the functions y = yc±(a, r) describe
the boundary of the permitted angular velocity
pattern (de Felice F. and Usseglio-Tomasset S.
1991). Clearly, at a fixed radius r, f̃ diverges
negatively at y = yc±, it vanishes at y = yg± and
has a maximum value at y = y0± given by

y0± =
−1
2a

1 −
3M

r
∓

√(
1 − 3M

r

)2

− 4Ma2

r3

 .

1 I use geometrized units, i.e. c = 1 = G, c and
G being respectively the velocity of light in the vac-
uum and the gravitational constant.
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It is easy to see that y0+
is always negative and

the curve y = y0+
(a, r) extends to infinity where

it goes ∼ r−3; it is larger then yg− which goes
∼ r−3/2 to the same limit; it vanishes identically
when a = 0. Setting y = y0+

(a, r), the function
f̃ takes the extreme value:

f̃ex =
∆1/2

r2



√
1 − 4Ma2

r3

(
1 − 3M

r

)−2

− 1

 ×


√
1 − 4Ma2

r3

(
1 − 3M

r

)−2

−

2a2

r2

(
1 − 3M

r

)−1

− 1


−1

. (9)

In the non rotating case (a = 0) the thrust
has a maximum at y = 0 at all r > 3M, while,
when the metric source is rotating (a , 0),
the thrust has a maximum at y0+

(a, r) there-
fore it has an anomalous behavior in the small
interval (y0+

, 0). Here, in fact, an increase of
|y| from 0 to |y0+

|, implies an increase of the
thrust outwards (being f̃ > 0) contrary to what
one expects in Newtonian mechanics, [6]. In
our case the behavior of the thrust is somehow
triggered by the gravitational drag remaining
hidden when a = 0 until the gravitational pull
becomes strong enough; as mentioned in the
introduction, this occurs in the Schwarzschild
space-time nearby the horizon (at r = 2M)
where no rotational drag exists at all.

3. Conclusions

Under special conditions and contrary to what
is expected in Newtonian mechanics, an in-
crease of the angular velocity of revolution of a
test particle on a spatially circular orbit, causes
an increase of its apparent weight so, in order
to keep the particle on the same orbit, the thrust
needs to be increased in the outward direction.

This is termed the relativistic thrust anomaly.
This effect is contributed by both the gravita-
tional pull and the gravitational drag; while the
former alone causes the anomaly to manifest it-
self very close to the gravitational source hence
hard to be tested, the combination of gravita-
tional pull and drag leads this effect to manifest
itself on counter-revolving orbits all the way
to asymptotic distances and therefore testable
with advanced technology. A way how to mea-
sure the effect in the gravitational field of the
Earth was discussed in de Felice F. (1995).
While its occurrence very close to the event-
horizon in the non-rotating case can be rea-
sonably understood admitting that an increase
of the angular velocity contributes to the parti-
cle’s weight more than it does to the centrifugal
potential, its occurrence at large distances from
a rotating source as it could be the Earth it-
self, is harder to understand in the above terms.
Since the condition of maximum thrust is also
that of zero precession for orbiting gyroscopes,
a sensible explanation could perhaps be found
in the effect of gravitational dragging on the
moving frames.
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